Caramenyelesaikan matriks ordo 3x3 sebelum mempelajari cara mencari matriks ordo 3x3, terlebih dahulu harus mempelajari tentang minor,kofaktor,dan adjoint. minor jika pada ordo matriks 3x3 element baris ke-i dan kolom ke-j di hilangkan maka akan di dapat matriks yang baru dengan ordo 2x2,determinan matrik ordo 2x2 itulah yang yang disebut minor ditulis dengan simbol.
Unduh PDF Unduh PDF Determinan matriks sering digunakan dalam kalkulus, aljabar linear, dan geometri pada tingkat yang lebih tinggi. Di luar dunia akademik, para insinyur dan pemrogram grafika komputer menggunakan matriks dan determinannya sepanjang waktu. [1] Jika Anda sudah tahu cara menentukan determinan matriks ordo 2x2, Anda hanya perlu belajar kapan menggunakan tambah, kurang, dan kali dalam menentukan determinan matriks ordo 3x3. Tulis matriks ordo 3 x 3 Anda. Kita akan mulai dengan matriks A ordo 3x3 dan cobalah untuk mencari determinan A. Di bawah ini adalah bentuk notasi umum matriks yang akan kita gunakan dan contoh matriks kita a11 a12 a13 1 5 3 M = a21 a22 a23 = 2 4 7 a31 a32 a33 4 6 2 1 Pilih satu baris atau kolom. Jadikan pilihan Anda sebagai baris atau kolom referensi. Apa pun yang Anda pilih, Anda akan tetap mendapat jawaban yang sama. Untuk sementara, pilih baris pertama. Kami akan memberi Anda beberapa saran untuk memilih opsi yang paling mudah dihitung di bagian berikutnya. Pilih baris pertama dari contoh matriks A. Lingkari angka 1 5 3. Di notasi umum, lingkari a11 a12 a13. 2 Coret baris dan kolom elemen pertama Anda. Lihat pada baris atau kolom yang Anda lingkari dan pilih elemen pertama. Coret baris dan kolomnya. Hanya akan tersisa 4 angka yang tidak tersentuh. Jadikan 4 angka ini sebagai matriks ordo 2 x 2. Pada contoh, baris referensi kita adalah 1 5 3. Elemen pertama berada pada baris ke-1 dan kolom ke-1. Coret seluruh baris ke-1 dan kolom ke-1. Tulis elemen yang tersisa menjadi matriks 2 x 2 1 5 3 2 4 7 4 6 2 3Tentukan determinan matriks ordo 2 x 2. Ingat, tentukan determinan matriks [ac bd] dengan cara ad - bc.[2] Anda juga mungkin pernah belajar menentukan determinan matriks dengan menggambar sebuah X di antara matriks 2 x 2. Kalikan dua angka yang terhubung dengan garis \ dari X. Lalu, kurangi dengan jumlah kali dua angka yang terhubung dengan garis /. Gunakan formula ini untuk menghitung determinan matriks 2 x 2. Pada contoh, determinan matriks [46 72] = 4*2 - 7*6 = -34. Determinan ini disebut minor dari elemen yang Anda pilih pada matriks awal.[3] Pada kasus ini, kita baru saja menemukan minor dari a11. 4 Kalikan angka yang telah ditemukan dengan elemen yang Anda pilih. Ingat, Anda telah memilih elemen dari baris atau kolom referensi ketika Anda memutuskan baris dan kolom yang akan dicoret. Kalikan elemen ini dengan determinan matriks 2 x 2 yang telah Anda temukan. Pada contoh, kita memilih a11 yang bernilai 1. Kalikan angka ini dengan -34 determinan dari matriks 2 x 2 untuk mendapatkan 1*-34 = -34. 5 Tentukan simbol dari jawaban Anda. Langkah selanjutnya adalah Anda harus mengalikan jawaban Anda dengan 1 atau-1 untuk mendapatkan kofaktor dari elemen yang Anda pilih. Simbol yang Anda gunakan tergantung dengan letak elemen pada matriks 3 x 3. Ingat, tabel simbol ini digunakan untuk menentukan pengali elemen Anda + - + - + - + - + Karena kita memilih a11 yang bertanda a +, kita akan mengalikan angka dengan +1 atau dengan kata lain, jangan diubah. Jawaban yang muncul akan sama, yaitu -34. Cara lain untuk menentukan simbol adalah dengan menggunakan formula -1i+j yang mana i dan j adalah baris dan kolom elemen. [4] 6 Ulangi proses ini untuk elemen kedua pada baris atau kolom referensi Anda. Kembalilah ke matriks awal 3 x 3 yang Anda lingkari baris atau kolomnya sebelumnya. Ulangi proses yang sama dengan elemen tersebut Coret baris dan kolom elemen tersebut. Pada kasus ini, pilih elemen a12 yang bernilai 5. Coret baris ke-1 1 5 3 dan kolom ke-2 5 4 6. Jadikan elemen yang tersisa menjadi matriks 2x2. Pada contoh kita, matriks ordo 2x2 untuk elemen kedua adalah [24 72]. Tentukan determinan matriks 2x2 ini. Gunakan formula ad - bc. 2*2 - 7*4 = -24 Kalikan dengan elemen pada matriks 3x3 yang Anda pilih. -24 * 5 = -120 Putuskan untuk mengalikan hasil di atas dengan -1 atau tidak. Gunakan tabel simbol atau formula -1ij. Pilih elemen a12 yang bersimbol – pada tabel simbol. Ganti simbol jawaban kita dengan -1*-120 = 120. 7 Ulangi proses yang sama untuk elemen ketiga. Anda memiliki satu kofaktor lagi untuk menentukan determinan. Hitung i untuk elemen ketiga di baris atau kolom referensi Anda. Berikut merupakan cara cepat menghitung kofaktor a13 pada contoh kita Coret baris ke-1 dan kolom ke-3 untuk mendapatkan [24 46]. Determinannya adalah 2*6 - 4*4 = -4. Kalikan dengan elemen a13 -4 * 3 = -12. Elemen a13 bersimbol + pada tabel simbol, sehingga jawabannya adalah -12. 8 Jumlahkan hasil ketiga hitungan Anda. Ini adalah langkah terakhir. Anda telah menghitung tiga kofaktor, satu untuk setiap elemen pada satu baris atau kolom. Jumlahkan hasil tersebut dan Anda akan menemukan determinan matriks 3 x 3. Pada contoh, determinan matriks adalah -34 + 120 + -12 = 74. Iklan 1 Pilih baris atau kolom referensi yang memiliki angka 0 paling banyak. Ingat, Anda dapat memilih baris atau kolom apa pun yang Anda mau. Apa pun yang Anda pilih, jawaban yang didapat akan sama. Jika Anda memilih baris atau kolom dengan angka 0, Anda hanya perlu menghitung kofaktor dengan elemen yang bukan angka 0 karena Sebagai contoh, pilih baris ke-2 yang memiliki elemen a21, a22, dan a23. Untuk memecahkan soal ini, kita akan menggunakan 3 matriks 2 x 2 yang berbeda, sebut saja A21, A22, and A23. Determinan matriks 3x3 adalah a21A21 - a22A22 + a23A23. Jika a22 dan a23 bernilai 0,formula yang ada akan menjadi a21A21 - 0*A22 + 0*A23 = a21A21 - 0 + 0 = a21A21. Oleh karena itu, kita hanya akan menghitung kofaktor dari satu elemen saja. 2 Gunakan baris tambahan untuk membuat soal matriks menjadi lebih mudah. Jika Anda mengambil nilai dari satu baris dan menambahkannya ke baris yang lain, determinan dari matriks tersebut tidak akan berubah. Hal ini juga berlaku sama untuk kolom. Anda dapat melakukan ini berulang kali atau mengalikannya dengan konstanta sebelum menambahkannya untuk mendapatkan angka 0 di matriks sebanyak mungkin. Hal ini dapat menghemat banyak waktu. Sebagai contoh, Anda memiliki matriks dengan 3 baris [9 -1 2] [3 1 0] [7 5 -2] Untuk menghilangkan angka 9 yang berada di posisi a11, Anda dapat mengalikan nilai di baris ke-2 dengan -3 dan menambahkan hasilnya ke baris pertama. Sekarang, baris pertama yang baru adalah [9 -1 2] + [-9 -3 0] = [0 -4 2]. Matriks yang baru memiliki baris [0 -4 2] [3 1 0] [7 5 -2]. Gunakan trik yang sama pada kolom untuk membuat a12 menjadi angka 0. 3 Gunakan cara cepat untuk matriks segitiga. Pada kasus khusus ini, determinan merupakan hasil dari elemen pada diagonal utama, dari a11 di kiri atas hingga a33 di kanan bawah matriks. Matriks ini masih merupakan matriks 3x3, tetapi matriks "segitiga" memiliki pola khusus dari angka yang bukan angka 0[5] Matriks segitiga atas Seluruh elemen yang tidak bernilai 0 berada pada atau di atas diagonal utama. Seluruh angka di bawah diagonal utama adalah angka 0. Matriks segitiga bawah Seluruh elemen yang tidak bernilai 0 berada pada atau di bawah diagonal utama. Matriks diagonal Seluruh elemen yang tidak bernilai 0 berada pada diagonal utama himpunan bagian dari jenis matriks di atas. Iklan Jika seluruh elemen pada satu baris atau kolom adalah 0, determinan matriks tersebut adalah 0. Metode ini dapat digunakan untuk seluruh ukuran matriks kuadrat. Sebagai contoh, jika Anda menggunakan metode ini untuk matriks ordo 4x4, "coretan" Anda akan menyisakan matriks ordo 3x3 yang determinannya dapat ditentukan dengan mengikuti langkah di atas. Ingat, mengerjakan hal ini dapat membuat Anda bosan! Iklan Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda?
MatriksKofaktor dan Adjoin Matriks - Setelah mempelajari materi matematika kali ini, anda dapat memahami tentang cara menentukan minor dan kofaktor suatu matriks. Andapun dapat mencari adjoin suatu matriks, sehingga nantinya adjoin matriks dapat digunakan dalam membantu mencari invers matriks. Mencari Nilai Minor 1. Memahami Nilai Minor
Artikel ini akan membahas tentang invers matriks yang termasuk dalam materi pelajaran Matematika Wajib Kelas 11. Elo tau nggak kalau sebuah angka ternyata punya nilai opposite atau kebalikan? Iya, itu yang dinamakan dengan invers. Di artikel ini gue mau ajak elo belajar tentang cara mencari invers matriks 2×2 dan 3×3 dengan rumus invers matriks. Sebelum masuk ke cara mencari invers matriks, pembahasan serta contoh soal invers matriks, elo perlu paham konsep invers dulu. Gimana sih taunya sebuah nilai punya kebalikan? Gini nih misalnya angka 2, kebalikan dari angka 2 adalah atau bisa ditulis dengan 2-1. Kebalikan dari angka 15 berarti atau 15-1. Nah, sekarang kalau angkanya adalah pecahan, nilai kebalikannya gimana? Gak usah bingung, tinggal dibalik aja. Misalnya pecahan berarti kebalikannya adalah 5 atau -1. Kita bisa menyebut kebalikan atau opposite dengan istilah invers. Lalu, apakah invers berlaku juga pada matriks? Yap, tentu saja berlaku. Di materi pelajaran Matematika Wajib kelas 11, elo udah belajar tentang matriks dan determinan matriks, iya kan? Kalau mau mengingat dan butuh review lagi, elo bisa langsung meluncur ke artikel yang udah gue tulis sebelumnya. Baca Juga Matriks Matematika Itu Apa Sih? Review sedikit, yuk! Matriks adalah susunan persegi/persegi panjang yang terdiri dari angka dan diatur dalam baris dan kolom. Masih ingat kan kalau baris itu yang susunannya horizontal kanan-kiri, sedangkan kolom yang susunannya vertikal atas-bawah seperti ini. Materi Matriks Arsip Zenius Cara Mencari Invers Matriks?Invers Matriks 2×2Invers Matriks 3×3 Nah, kita nyambung lagi ke invers matriks. Suatu matriks juga memiliki invers. Konsepnya masih sama, bahwa ketika ada matriks A, maka inversnya adalah A-1. Selain konsep tersebut, untuk mencari invers matriks juga ada konsep lainnya yang harus elo perhatikan. Ketika kita mengalikan suatu angka dengan kebalikannya, maka hasilnya akan bernilai 1. Ketika dibalik hasilnya juga akan tetap sama, yaitu 1. Hal yang sama juga berlaku pada matriks. Ketika kita mengalikan matriks dengan kebalikannya, maka kita akan mendapatkan matriks identitas yang setara dengan nilai 1. Begitu pun dengan kebalikannya. Elo masih ingat gak matriks identitas itu yang seperti apa? Yap, matriks persegi yang semua elemen diagonal utamanya bernilai satu, sedangkan elemen lainnya bernilai nol. Seperti ini ilustrasinya. Sebelum memasuki invers matriks, ada baiknya elo kenal dulu sama istilah determinan, minor-kofaktor, dan jenis-jenis matriks. Gue udah pernah nulis artikel yang membahas poin-poin tersebut di artikel gue yang ini. Baca Juga Determinan Matriks dan Metode Penyelesaiannya Invers matriks persegi ada yang memiliki ordo 2×2 dan 3×3. Dari kedua matriks persegi ini elo bisa mencari determinannya untuk bisa mencari invers matriks. Invers Matriks 2×2 Menghitung invers matriks ordo 2×2 lebih mudah dibandingkan dengan matriks yang berordo lebih tinggi seperti 3×3. Elo hanya perlu menghitungnya menggunakan rumus di bawah ini. Rumus Invers Matriks 2×2 Kalau elo bertanya, Adj A itu apa sih? Jadi, Adj A adalah adjoin matriks A, berarti transpose dari matriks A yang elemen-elemennya merupakan kofaktor dari elemen-elemen matriks A. Untuk mengetahui kofaktor itu yang gimana, elo bisa baca lagi artikel gue sebelumnya tentang Determinan Matriks. Contohnya gini, ada suatu matriks . Elo diminta untuk mencari invers dari matriks A tersebut. Elo bisa masukan matriks A ini ke dalam rumus di atas, seperti ini A ini lambang apa sih? Ini determinan matriks ya. Jadi elo tinggal menggali silangkan elemen-elemen secara diagonal untuk tau determinannya. Makanya, di rumus didapatkan ad – bc ya. Huruf-huruf itu tinggal elo ganti ke angka nanti di contoh soal invers matriks 2×2. Nah, jadi untuk mendapatkan adjoin dari matriks A yang ordonya 2×2, elo hanya perlu menukar posisi a dan d, kemudian letakkan nilai negatif di depan b dan c. Contoh Soal Invers Matriks Ordo 2×2 dan Jawabannya Untuk mempermudah, kita langsung cemplungin angka-angkanya ke dalem, yuk! Perhatikan contoh soal di bawah ini! Dari soal di atas udah diketahui tuh determinannya. Selanjutnya, kita hitung invers dari matriks P-nya atau P-1. Nah, sekarang elo udah menemukan invers dari matriks P. Untuk membuktikan apakah hasil tersebut benar, elo bisa pakai konsep yang pertama gue tulis di atas bahwa AxA-1= I matriks identitas. Langsung aja deh kita buktikan. Untuk membuktikan persamaan selanjutnya, coba deh elo hitung apakah A-1A=I juga? Dari hasil perhitungan di atas, elo udah paham mulai dari konsep, cara mencari invers matriks 2×2, hingga membuktikan bahwa hasil tersebut sudah benar. Invers Matriks 3×3 Sekarang kita masuk ke invers matriks ordo 3×3, gimana sih cara perhitungannya? Apakah sama dengan matriks berordo 2×2? Sebenarnya, untuk menentukan invers dari matriks berordo 3×3 itu bisa dilakukan dengan beberapa cara, ada yang menggunakan metode Eliminasi Gauss-Jordan atau transformasi baris elementer dan menggunakan adjoin. Kali ini, gue bakal membahas perhitungan invers dengan Adjoin sama seperti matriks berordo 2×2. Apakah cara perhitungannya sama? Oke, langsung aja kita bahas deh biar tau caranya sama atau berbeda. Secara umum, rumus invers matriks adalah . Jadi rumus invers matriks 3×3 tetap menggunakan rumus umum tersebut ya. Nah, untuk menentukan determinan matriks 3×3, kita bisa menggunakan dua cara, yaitu metode Sarrus dan Minor-Kofaktor. Lalu, gimana cara menentukan Adjoin matriks 3×3? Elo harus ingat cara menentukan kofaktor matriks aij, yaitu Cij = -1i+jMij, di mana Mij adalah minor dari matriks Aij, sedangkan Cij adalah kofaktor A atau KofA. Berarti, C11 = -11+1M11=M11 , C12= -11+2M12= –M12 , dst sampai dihasilkan seperti ini. Selanjutnya kita cari determinannya, dengan cara Mij = detAij. Misalnya kita ambil contoh M11 = detA11 = menghilangkan elemen baris ke-1 dan kolom ke-1, sehingga hanya diperoleh ordo 2×2 untuk setiap elemennya, dst sehingga diperoleh seperti ini. Balik lagi, tujuan kita adalah untuk mencari Adjoin matriks A. Apa sih hubungannya dengan kofaktor? Kenapa kita perlu mencari kofaktor terlebih dahulu? Ternyata, hubungannya adalah Adjoin matriks A sama dengan transpose dari matriks A atau disimbolkan seperti ini AdjA = KofAt. Masih ingat kan transpose itu apa? Yap, elemen-elemen pada baris diganti jadi kolom, dan elemen kolom diganti jadi baris. Contoh Soal Invers Matriks 3×3 dan Jawabannya Supaya gak makin bingung, kita langsung cemplungin ke dalam angka-angka ya. Coba perhatikan kutipan video materi dari Zenius yang membahas Contoh Soal Tentang Invers Matriks 3×3 dengan Adjoin di bawah ini. Video Materi Premium Zenius tentang Contoh Soal Invers dari Matriks 3×3 dengan Adjoin Nah, dari situ, kita lanjut tentukan transpose dari KofA untuk menentukan AdjA. Sekarang kita masukkan rumusnya Gimana, lebih gampang setelah dimasukkan angka-angkanya kan? Dari penjelasan di atas tentang invers dari matriks 3×3, elo udah tau nih metode apa aja yang bisa elo gunakan, cara menentukan determinan dan Adjoin, dan cara perhitungan invers matriks berordo 3×3. Materi ini mungkin masuk dalam TPS Tes Potensi Skolastik dalam UTBK, lho. Makanya gak ada salahnya untuk benar-benar paham tentang materi invers matriks yang satu ini. Biar makin paham elo bisa cek materi belajar di banner bawah ini dengan penjelasan dan latihan soal yang lebih banyak lagi. Jangan lupa login atau daftar dulu biar punya akun Zenius. Abis itu tinggal elo ketik topik materi yang mau dipelajari di kolom pencarian. Klik banner di atas! Oke, sampai sini dulu deh penjelasan mengenai invers matriks. Semoga apa yang udah gue sampaikan di atas bisa memudahkan proses belajar dan mengerjakan tugas. Kalau elo masih bingung, langsung bilang di kolom komentar bagian mana yang masih elo kurang paham ya! O ya, gue juga mau rekomendasiin paket belajar dari Zenius buat elo yang duduk di kelas 10, 11, dan 12 SMA. Melalui paket ini elo bisa akses ke ribuan video materi belajar, latihan soal, tryout, dan sesi live class buat bantu ningkatin nilai rapor elo. Cek info selengkapnya dengan klik banner di bawah ya! Baca Juga Artikel Lainnya Induksi Matematika untuk Membuktikan Rumus Materi Matematika SMP Persamaan dan Pertidaksamaan Linear Satu Variabel PLSV dan PTLSV Yuk, Kenalan sama Barisan dan Deret Aritmetika! Originally published September 28, 2021 Updated by Silvia Dwi & Arieni Mayesha
Caramencari kofaktor matriks 3×3. Minor M K 3 1 2 5. Dari matriks A a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 dapat diperoleh kofaktor-kofaktor. View Matriks Minor Kofaktor Determinan 3x3docx from MATH 03 at Universitas Indonesia. Pin On Rpp Bil Exponent .
Selislih antara perkalian elemen-elemen pada diagonal utama dengan diagonal sekunder pada matriks persegi disebut determinan matriks. Simbol determinan matriks adalah tanda nama matriks atau detnama matriks, misalnya determinan matriks A dituliskan dalam simbol A atau detA. Determinan matriks hanya terdapat pada matriks persegi, misalnya determinan matriks 3×3. Matriks adalah kumpulan beberapa bilangan yang disusun dalam baris dan kolom di dalam tanda kurung atau kurung siku [ ]. Ukuran matriks ordo dinyatakan dalam baris × kolom, sehingga matriks dengan ukuran 3×1 memiliki bentuk yang berbeda dengan matriks ukuran 1×3. Matriks persegi adalah matriks yang memiliki jumlah baris sama dengan jumlah kolom disebut dengan. Pada matriks dengan jumlah baris dan kolom sama dengan dua merupakan matriks persegi ordo 2. Sedangkan matriks persegi dengan jumlah baris dan kolom sama dengan 3 disebut matriks berordo 3, begitu seterusnya. Sehingga determinan matriks 3×3 adalah nilai determinan dari matriks persegi yang memiliki jumlah elemen baris = kolom = 3. Cara Menentukan determinan pada matriks persegi dengan ukuran 2 x 2 cukup mudah dilakukan yaitu dengan menghitung selisih perkalian bilangan antara diagonal utama dengan diagonal sekunder. Diagonal utama adalah bilangan-bilangan pada garis diagonal yang ditarik dari sisi kiri atas ke kanan bawah matriks. Sedangkan diagonal sekunder adalah bilangan-bilangan pada garis diagonal yang ditarik dari sisi kanan atas ke kiri bawah matriks. Sedangkan pada cara menentukan determinan matriks 3×3 memerlukan perhitungan yang lebih rumit dan ditidak semuah perhitungan determinan matriks 2×2. Cara yang dapat digunakan untuk menentukan determinan matriks 3×3 adalah metode kofaktor dan aturan Sarrus. Bagaimana cara menentukan determinan matriks 3×3 dengan metode kofaktor? Bagaimana cara menentukan determinan matriks 3×3 dengan aturan Sarrus? Sobat idschool dapat mencari tahu jawabannya melalui ulasan di bawah. Baca Juga Perkalian Matriks 2×2, 3×3, dan mxn dengan nxm Determinan Matriks 3×3 dengan Metode Kofaktor Ada cara lain yang dapat digunakan untuk menentukan nilai determinan dari suatu matriks persegi dengan ordo 3 x 3 yaitu metode minor-kofaktor. Rumus umum yang berlaku pada metode kofaktor terdapat dalam sebuah teorema yang telah terbukti kebenarannya. Bunyi dari teorema untuk nilai determinan matriks persegi berordo n terdapat seperti pernyataan berikut. Teorema Determinan matriks A yang berukuran n x n dapat dihitung dengan mengalikan entri-entri dalam suatu baris atau kolom dengan kofaktor-kofaktornya dan menambahkan hasil-hasil kali yang dihasilkan yakni untuk setiap 1 ≤ i ≤ n dan 1 ≤ j ≤ n, maka detA = a1jC1j + a2jC2j + … + anjCnjekspansi kofaktor sepanjang kolom ke-j Atau detA = ai1Ci1 + ai2Ci2 + … + ainCinekspansi kofaktor sepanjang baris ke-i Dari teorema di atas disinggung kofaktor yang definisinya diberikan seperti berikut. Definisi Jika A adalah matriks kuadrat, maka minor entri aij dinyatakan oleh Mij dan didefinisikan menjadi determinan submatriks yang tetap setelah baris ke-i dan kolom ke-j dicoret dari A. Kofaktor entri aij dinyatakan dalam persamaan Cij = –1i+jMij Untuk mempermudan pemahaman sobat idschool, perhatikan bagaiaman menentukan minor entri aij dan kofaktor entri aij pada matriks A berikut. Selanjutnya, nilai determinan matriks A dapat ditentukan melalui persamaan detA = a11C11 + a12C12 + a13C13. Perhatikan cara menentukan determinan matriks 3×3 berikut. Baca Juga Penggunaan Matriks untuk Menyelesaikan Sistem Persamaan Linear Aturan Sarrus untuk Menentukan detA Aturan Sarrus merupakan kasus khusus dari metode kofaktor yang terdapat pada matriks berukuran 3 x 3. Perhatikan kembali komponen susunan bilangan pada matriks A. Minor entri a11, a12, dan a13 yaitu M11, M12, dan M13 memenuhi persamaan-persamaan berikut. Sehingga kofaktor untuk a11, a12, dan a13 diberikan seperti persamaan C11, C12, dan C13 berikut. C11 = –11+1 ⋅ M11 = ei – fh C12 = –11+2 ⋅ M12 = fg – di C13 = –11+3 ⋅ M13 = dh – eg Sehingga diperoleh determinan matriks A seperti yang ditunjukkan pada langkah berikut. detA = a11C11 + a12C12 + a13C13detA = aei – fh + bfg – di + cdh – ge= aei – afh + bfg – bdi + cdh – ceg= aei + bfg + cdh – ceg – afh – bdi Untuk memudah mengingat persamaan umum pada Aturan Sarrus perhatikan cara berikut. Penggunaan Aturan Sarrus untuk menentukan nilai determinan matriks persegi dengan ordo 3 dapat dilihat seperti langkah-langkah berikut. Penyelesaian detA = AA = 4×4×4 + 3×2×3 + 5×1×2 – 5×4×3 – 4×2×2 – 3×1×4A = 64+18+10–60–16–12 = 4 Diperoleh determinan matriks 3×3 tersebut adalah detA = 4, Di mana nilainya sama dengan cara sebelumnya, bukan? Aturan Sarrus merupakan metode yang paling tepat digunakan untuk menentukan nilai determinan matriks persegi berordo 3. Untuk menghitung nilai determinan matriks dengan ordo lebih tinggi sepert 4×4, 5×5, atau yang lebih tinggi dapat menggunakan metode kofaktor atau kombinasi Aturan Sarrus dan metode kofaktor. Demikianlah tadi ulasan cara menentukan determinan matriks 3×3 dengan metode kofaktor dan Aturan Sarrus. Terimakasih sudah mengunjungi idschooldotnet, semoga bermanfaat! Baca Juga Jenis-Jenis Matriks
materisebelumnya yaitu cara menentukan nilai determinan matriks berordo 3x 3 dengan cara sorrus serta mengaitkan kembali dengan materi yang akan dibahas. Determinan berordo 3x3 dengan cara Determinan Kofaktor. Determinan Utama (D) 1 0 1 1 1 0 1 1 1 3 5 10 10 15 1 x 1 = 1 -1 x -1 = 1 1 x 1 = 1 . Determinan Variabel x (Dx) 10 0 1 6 1 0
Pada artikel terdahulu, kita sudah membahas tentang mencari minor suatu matriks. Bagi teman – teman yang masih belum memahami tentang minor suatu matriks, bisa di baca lagi artikel saya yang lalu tentang pengertian minor suatu matriks. Penguasaan materi minor mutlak diperlukan, karena kita hanya bisa mengerti tentang kofaktor dan adjoin jika kita sudah mengerti tentang minor suatu matriks. Baiklah kita langsung saja ke pokok bahasannya. Yang pertama kita bahas tentang kofaktor suatu matriks. Kofaktor suatu matriks dirumuskan sebagai -1 pangkat baris ditambah kolom elemen minor dari matriks bersangkutan. Secara matematis dirumuskan sebagai $latex K_{ij}=-1^{i+j}.M_{ij}$ Keterangan $latex K_{ij}$ maksudnya kofaktor dari suatu matriks baris ke – i dan kolom ke – j. i menyatakan baris j menyatakan kolom. $latex M_{ij}$ merupakan minor baris ke – i kolom ke – j dari suatu matriks. Contoh Tentukanlah kofaktor dari matriks $latex A=\begin{bmatrix}2&4\\3&5\end{bmatrix}$ Jawab Terlebih dulu kita cari minor dari matriks A tersebut. Disini minor dari matriks A di dapat $latex M_{A}=\begin{bmatrix}5&3\\4&2\end{bmatrix}$ Kemudian kita cari kofaktor tiap elemen dari minor tersebut Kofaktor Matriks A baris pertama kolom pertama, berarti i = 1 dan j = 1. $latex K_{11}=-1^{i+j}. M_{ij}$ $latex K_{11}=-1^{1+1}. M_{11}$ $latex K_{11}=-1^{2}.5$ $latex K_{11}= Kofaktor matriks A baris pertama kolom kedua, berarti i = 1 dan j = 2. $latex K_{12}=-1^{1+2}.M_{12}$ $latex K_{12}=-1^{3}.M_{12}$ $latex K_{12}=-1.3=-3$ Kofaktor matriks A baris kedua kolom pertama, berarti i = 2 dan j = 1 $latex K_{21}=-1^{2+1}.M_{21}$ $latex K_{21}=-1^{3}.4$ $latex K_{21}=-4$ Kofaktor matriks A baris kedua kolom kedua, berarti i = 2 dan j = 2 $latex K_{22}=-1^{2+2}.M_{22}$ $latex K_{22}= Jadi, kofaktor dari matriks A adalah $latex K_{A}=\begin{bmatrix}5&-3\\-4&2\end{bmatrix}$ Sekarang bagaimana dengan Adjoinnya?. Kita langsung saja ya cari adjoin matriks A di atas. Tetapi terlebih dulu kita bahas secara singkat apa sih yang dimaksud dengan adjoin?. Adjoin merupakan transfus dari kofaktor matriks A. secara matematis dirumuskan sebagai $latex Adj A=K_{A}^{T}$ Dimana $latex K_{A}^{T}$ = Transfus kofaktor dari matriks A Adj A = adjoin matriks A jadi rinciannya seperti ini. Jika kita mau mencari adjoin sebuah matriks, maka terlebih dulu kita cari minornya dulu, setelah itu dari minor ini kita akan mendapatkan matriks kofaktor. Kemudian kofaktor ini kita transfuskan itulah adjoin sebuah matriks. Gampang ya. Oh ya, dalam kalimat di tadi ada kata transfus, apa sih yang dimaksud dengan matriks transfuse?. Matriks transfus maksudnya matriks yang urutan baris diubah menjadi kolom dan kolom menjadi baris. Dari soal di atas , maka kita bisa menentukan adjoinnya adalah sebagai berikut $latex Adj A =K_{A}^{T}$ $latex Adj A=\begin{bmatrix}5&-4\\-3&2\end{bmatrix}$ Sekarang bagaimana kalau matriksnya berordo 3 x 3?. Kita perhatikan contoh di bawah ini ! Contoh Tentukanlah Kofaktor dan Adjoin dari matriks berikut $latex A=\begin{bmatrix}2&4&6\\1&3&2\\0&1&2\end{bmatrix}$ Penyelesaian Terlebih dahulu kita cari minor matriks A, disini didapat bahwa minor matriks A adalah $latex A=\begin{bmatrix}4&0&1\\2&4&2\\10&-2&2\end{bmatrix}$ Sehingga kofaktor matriks A adalah $latex A=\begin{bmatrix}4&0&1\\-2&4&-2\\10&2&2\end{bmatrix}$ Adjoin matriks A dicari dengan mencari transfus dari kofaktor matriks A, sehingga $latex Adj A=\begin{bmatrix}4&2&10\\0&4&-2\\1&2&2\end{bmatrix}$ Demikianlah uraian materi tentang kofaktor dan adjoin suatu matriks. Semoga bermanfaat.
Caramencari nilai x agar matriks singular penma 2b. Tentukan nilai determinan dari matriks ordo 3x3 berikut : . Invers matriks 3x3 rumus cepat . Pada penjelasan sebelumnya tentang determinan matriks, kamu udah tau kan bagaimana cara mencari. Misalnya matriks ordo 2 x 3 dapat dikalikan dengan matriks ordo 3 x 3.
7 tahun lalu Real Time1menit Metode Sarrus hanya dapat digunakan untuk matriks 3×3. Perhitungan determinan suatu matriks dengan ukuran lebih besar sangat rumit jika menggunakan metode Sarrus. Salah satu cara menentukan determinan matriks segi adalah dengaz minor-kofaktor elemen matriks tersebut. Cara ini dijelaskan sebagai berikut Misalkan Aᵢⱼ adalah suatu matriks yang diperoleh dengan cara menghilangkan baris ke-i dan kolom ke-j dari suatu matriks Aₘₓₙ. Didefinisikan sebagai berikut Minor elemen aᵢⱼ diberi notasi Mᵢⱼ, adalah Mᵢⱼ=detAᵢⱼ. Kofaktor elemen aᵢⱼ, diberi notasi αᵢⱼ, adalah αᵢⱼ=-1ⁱ⁺ʲ. Contoh Misalkan suatu matriks A berukuran 3×3 seperti berikut ini \[\begin{pmatrix} 1 &2 &3 \\ 4 &5 &6 \\ 7 &8 &9 \end{pmatrix}\] maka diperoleh Perhitungan Determinan dengan Minor-Kofaktor Definisi Misalkan suatu matriks A = aᵢⱼₙₓₙ dan aᵢⱼ kofaktor elemen aᵢⱼ, maka Contoh 1 Hitunglah determinan matriks berikut” \[\begin{pmatrix} 3 &-2 &1 \\ 1 &3 &2 \\ 0 &-3 &1 \end{pmatrix}\] Jawab Untuk menghitung determinan dari matriks tersebut kita gunakan definisi di atas, dengan memilih baris ke-2, sehingga detA=a₂₁ α₂₁+a₂₂ α₂₂+a₂₃ α₂₃Dalam hal ini, a₂₁=1,a₂₂=3, a₂₃=2, dan Jadi, detA=1-1 + 33 + 29 = 26 Selanjutnya dengan menggunakan definisi diatas lagi, kita juga bisa dengan memilih baris/kolom lainnya, misal dipilih kolom ke-3, maka \det\mathbf{A}=a_{13}\alpha _{13}+a_{23}\alpha _{23}+a_{33}\alpha _{33}\dalam hal ini,\a_{13}=1,a_{23}=2,a_{33}=1\, dan Jadi, detA = 1-3 + 29 + 111 = 26 Apabila kita perhatikan pada hasil akhir pada penyelesaiannya, kita akan dapatkan hasil yang sama. Maka kita cukup memilih satu baris atau kolom saja untuk mengerjakan soal seperti diatas. Contoh 2 Tentukan determinan matriks A₃ₓ₃ berikut ini \[\begin{pmatrix} a_{11} &a_{12} &a_{13} \\ a_{21} &a_{22} &a_{23} \\ a_{31} &a_{32} &a_{33} \end{pmatrix}\] JawabDengan menggunakan definisi di atas, dengan memilih baris ke-1 Jadi didapatkan seperti dibawah ini Jika diperhatikan, sebenarnya rumus pada metode Sarrus diperoleh dari metode minor-kofaktor. Perhatikan bahwa tanda untuk kofaktor bergantung pada penjumlahan i dan j. Untuk memudahkan perhitungan determinan dengan menggunakan minor-kofaktor, perhatikan tabel berikut Jika dipilih baris ke-1, maka detA=a₁₁M₁₁-a₁₂M₁₂+…Jika dipilih baris ke-2, maka detA=a₂₁M₂₁-a₂₂M₂₂+… dan seterusnya. sheetmath
Hallosemuanya, kali ini kita akan membahas dan belajar tentang materi pembelajaran pada tingkat SMA/MA sederajat. Akan saya buat playlist Materi SMA/MA deng
Dalam artikel Matematika kelas 11 ini akan menjelaskan cara mencari determinan dan invers suatu matriks disertai dengan beberapa contoh soal dan pembahasannya. — Di artikel sebelumnya, kita udah belajar mengenai pengertian serta operasi hitung pada matriks. Hayoo, ada yang masih ingat syarat perkalian dua matriks itu apa? Nah loh! Masa sih udah lupa aja. Coba deh baca-baca lagi artikel di link ini kalau kamu lupa. Nah, bahasan kali ini masih seputar matriks, nih. Pasti kamu udah tau dari judul artikel di atas. Yap! Bener banget. Kita akan belajar tentang cara mencari determinan dan invers matriks. Waduh, bagaimana tuh ya? Langsung aja yuk kita simak bersama-sama. Cara Mencari Determinan Matriks Well, kita mulai dari cara mencari determinan matriks terlebih dahulu, ya. Kenapa? Soalnya, untuk mencari invers matriks, kita perlu mencari determinan matriksnya lebih dulu. Teman-teman ada yang udah tau apa itu determinan matriks? Determinan adalah nilai yang dapat dihitung dari unsur-unsur suatu matriks persegi. Maksudnya matriks persegi tuh yang kayak gimana sih? Matriks persegi adalah matriks yang memiliki jumlah baris dan kolom yang sama, sehingga kalau kita gambarkan bentuk matriksnya, akan membentuk bangun layaknya persegi. “Jadi, kalau jumlah baris dan kolomnya nggak sama, kita nggak bisa mencari determinannya?” Jawabannya udah pasti, sumber Gimana, paham ya sampai sini? Oke, kita lanjut, ya. Misalnya, terdapat suatu matriks yang kita beri nama matriks A. Determinan matriks A bisa ditulis dengan tanda det A, det A, atau A. Nah, cara mencari determinan suatu matriks juga berbeda-beda, tergantung dari ordonya. Kita bahas satu-satu, ya… Baca juga Memahami Konsep Turunan Fungsi Aljabar a. Determinan Matriks Ordo 2×2 Misalkan,adalah matriks berordo 2×2. Elemen a dan d terletak pada diagonal utama, sedangkan elemen b dan c terletak pada diagonal kedua. Determinan matriks A dapat diperoleh dengan mengurangkan hasil kali elemen-elemen diagonal utama dengan hasil kali elemen-elemen diagonal kedua. Nah, supaya kamu nggak bingung, coba kita perhatikan contoh soal di bawah ini. Contoh soal Tentukanlah determinan matriks berikut! Pembahasan Teman-teman, mudah kan ternyata. Hm, kira-kira, mencari determinan matriks berordo 3×3 mudah juga nggak ya? Yuk, kita cari tau! b. Determinan Matriks Ordo 3×3 Misalkan,adalah matriks berordo 3×3. Terdapat dua cara yang bisa dilakukan untuk mencari determinannya, yaitu menggunakan aturan Sarrus dan metode minor-kofaktor. Hmm… Kamu pasti bingung ya maksud rumus di atas. Tenang aja, di bawah ini udah ada contoh soal dan pembahasannya kok. Jadi, bisa kamu pahami dengan baik. Tapi, jangan cuma dibaca aja ya. Supaya kamu lebih mudah paham, coba deh ikutan corat-coret di kertas. Yuk, siapkan pulpen dan kertasnya! Baca juga Kedudukan Titik dan Garis Lurus pada Lingkaran Contoh soal determinan matriks Tentukan determinan matriks berikut ini menggunakan aturan Sarrus dan metode minor-kofaktor! Pembahasan Aturan Sarrus Agar lebih mudah, kita tulis kembali elemen-elemen pada kolom ke-1 dan ke-2 di sebelah kanan matriks A sebagai berikut Kemudian, kita tarik garis putus-putus seperti gambar di atas. Kalikan elemen-elemen yang terkena garis putus-putus tersebut. Hasil kali elemen yang terkena garis putus-putus berwarna biru diberi tanda positif +, sedangkan hasil kali elemen yang terkena garis putus-putus berwarna oranye diberi tanda negatif -. Ingat urutan penulisannya juga, ya! Sepintas terlihat cukup rumit ya. Tapi, kalau kamu sering berlatih soal, pasti akan hafal dengan sendirinya. Jadi, jangan malas untuk berlatih soal, ya! Sekarang, kita coba kerjakan menggunakan metode yang satunya lagi kuy! Metode Minor-Kofaktor Berdasarkan rumus minor-kofaktor di atas, determinan matriks A dapat dicari dengan menghitung jumlah seluruh hasil kali antara kofaktor matriks bagian dari matriks A dengan elemen-elemen pada salah satu baris atau kolom matriks A. Jadi, pertama, kita pilih salah satu baris atau kolom matriks A untuk mendapatkan nilai determinannya. Misalnya, kita pilih baris ke-1. Elemen-elemen matriks baris ke-1, yaitu a11, a12, dan a13. Selanjutnya, karena kita pilih elemen-elemen pada baris ke-1, rumus determinan matriks yang kita gunakan adalah sebagai berikut Langkah kedua, kita cari kofaktor matriks bagian dari matriks A Cij. Cij = -1i+j Mij dan Mij = det Aij dengan Aij merupakan matriks bagian dari matriks A yang diperoleh dengan menghilangkan baris ke-i dan kolom ke-j. Maksudnya bagaimana? Oke, coba kamu perhatikan baik-baik ya. Sebelumnya, kita telah memilih elemen-elemen pada baris ke-1, yaitu a11, a12, dan a13. Oleh karena itu, matriks bagian dari matriks A nya adalah A11, A12, dan A13. A11 diperoleh dengan menghilangkan elemen-elemen pada baris ke-1 dan kolom ke-1. A12 diperoleh dengan menghilangkan elemen-elemen pada baris ke-1 dan kolom ke-2. A13 diperoleh dengan menghilangkan elemen-elemen pada baris ke-1 dan kolom ke-3. Sehingga, Kalau kamu perhatikan, nilai determinan matriks A yang dihasilkan menggunakan dua metode di atas akan sama aja ya. Jadi, kamu tinggal pilih nih, mana metode yang menurutmu paling mudah. Tapi, meskipun begitu, ada baiknya kamu juga pahami kedua-duanya. Kenapa? Siapa tau di ujian nanti keluar dua-duanya, loh. Mau punya banyak latihan soal? Langsung aja cek fitur Bank Soal di aplikasi Ruangguru ya. Oh iya, kamu juga perlu tau nih, determinan matriks memiliki beberapa sifat sebagai berikut Teman-teman, ada pertanyaan nggak sejauh ini? Kalau ada yang ingin ditanyakan, tulis aja pertanyaanmu di kolom komentar, ya. Kita lanjut ke materi berikutnya yuk, yaitu invers matriks. Ada yang udah nggak sabar mau tau cara mencari invers suatu matriks? Yok lah kita simak bahasan berikut. Cara Mencari Invers Matriks Kamu pasti nggak asing lagi dengan istilah invers. Saat mendengar kata invers, kamu pasti teringat materi fungsi invers yang udah pernah kamu pelajari sebelumnya. Invers dapat juga diartikan sebagai lawan dari sesuatu kebalikan. Invers matriks adalah kebalikan invers dari sebuah matriks. Jadi, apabila matriks tersebut dikalikan dengan inversnya, maka akan menjadi matriks identitas. Pada fungsi invers, kita disuruh mencari kebalikan dari fungsi tersebut. Misalnya aja, invers dari fx = 2x, maka jawabannya adalah f-1 x = ½ x. Gimana cara mencarinya? Kalau lupa, bisa langsung klik link di bawah ini. Baca juga Apakah Fungsi Invers itu? Invers pada fungsi dengan invers pada matriks tentu aja berbeda. Selain itu, sama halnya dengan determinan, ordo matriks mempengaruhi cara mencari invers pada matriks tersebut. Nah, jika suatu matriks memiliki invers, maka dapat dikatakan matriks tersebut adalah matriks nonsingular. Sebaliknya, jika suatu matriks tidak memiliki invers, maka matriks tersebut merupakan matriks singular. Teman-teman, untuk penjelasan lebih lengkapnya mengenai mencari invers matriks dapat kamu perhatikan penjelasan di bawah ini. a. Invers Matriks Ordo 2×2 Kita langsung ke contoh soal ya agar kamu semakin paham. Contoh soal invers matriks ordo 2×2 Tentukanlah invers dari matriks berikut. Pembahasan Catatan elemen-elemen yang berada di lingkar biru merupakan diagonal utama matriks A yang ditukar posisinya, sedangkan elemen-elemen yang berada di lingkar oranye merupakan diagonal kedua matriks A yang dikalikan dengan minus satu -1. Gimana, paham ya dengan pembahasan di atas. Lanjut ke invers matriks ordo 3×3 yuk! b. Invers Matriks Ordo 3×3 Mencari invers matriks berordo 3×3 dapat dilakukan dengan dua cara, yaitu dengan adjoin dan transformasi baris elementer. Hm, kira-kira seperti apa ya penjelasan lebih detailnya. Mari kita bahas satu persatu, ya. Invers matriks ordo 3×3 dengan adjoin Pada penjelasan sebelumnya tentang determinan matriks, kamu udah tau kan bagaimana cara mencari kofaktor dari suatu matriks. Nah, dari kofaktor-kofaktor tersebut, kita dapat menentukan adjoin matriksnya, lho. Adjoin matriks merupakan transpose dari suatu matriks yang elemen-elemennya merupakan kofaktor dari elemen-elemen matriks tersebut. Sekarang, coba perhatikan contoh soal di bawah ini. Contoh soal invers matriks ordo 3×3 dengan adjoin Tentukan invers matriks berikut dengan menggunakan adjoin! Penyelesaian Oke, berdasarkan rumus di atas, kita membutuhkan determinan dan adjoin matriks A. Pertama, kita cari terlebih dahulu determinan matriks A menggunakan metode yang sudah dijelaskan sebelumnya. Bisa dengan cara aturan Sarrus ataupun metode minor-kofaktor. Misalnya, kita akan menggunakan metode Sarrus, sehingga Kemudian, kita tentukan adjoin matriks dengan mencari kofaktor matriks A tersebut. Oleh karena itu, Jadi, Invers matriks ordo 3×3 dengan transformasi baris elementer Untuk menentukan invers matriks menggunakan transformasi baris elementer, kamu dapat mengikuti langkah-langkah berikut ini. Bingung ya sama langkah-langkah di atas? Yaudah, supaya nggak bingung, di bawah ini ada contoh soal, nih. Gimana kalo kita kerjakan sama-sama. Pulpen dan kertas tadi masih ada, kan? Contoh soal invers matriks 3×3 dengan transformasi baris elementer Tentukan invers matriks A dengan transformasi baris elementer. Pembahasan Pertama-tama, kita bentuk matriks A menjadi matriks A3I3. Lalu, kita transformasikan matriks A3I3 ke bentuk I3A3. Kita bisa menggunakan beberapa cara seperti yang dijelaskan poin a-d pada langkah ke-2 rumus di atas. Keterangan 1 B2-2B1 = elemen-elemen baris ke-2 dikurang 2 kali elemen-elemen baris ke-1. 2 B3-2B1 = elemen-elemen baris ke-3 dikurang 2 kali elemen-elemen baris ke-1. 3 B3+B2 = elemen-elemen baris ke-3 ditambah elemen-elemen baris ke-2. 4 1/5B3 = elemen-elemen baris ke-3 dikali degan ⅕. 5 B2-2B3 = elemen-elemen baris ke-2 dikurang 2 kali elemen-elemen baris ke-3. 6 B1-B2 = elemen-elemen baris ke-1 dikurang elemen-elemen baris ke-2. Sehingga, diperoleh invers matriks A, yaitu “Ingin berkata kasar tapi diriku terlalu Masya Allah”. Pusing ya? Belajarnya pelan-pelan aja dulu. Baca dan pahami penjelasannya berulang-ulang. Selain itu, coba juga untuk latihan mengerjakan beberapa soal. Ingat! Belajar Matematika itu butuh kesabaran, waktu, dan ketekunan, loh. Makanya, jangan harap sekali belajar langsung hafal rumus dan expert menjawab soal. Apalagi kalau besok ada ulangan, terus baru hari ini kamu belajar. Duh! Hasilnya udah pasti kurang maksimal. Coba deh baca artikel 7 solusi belajar menghadapi ulangan Matematika di blog Ruangguru biar lain kali kamu punya strategi yang tepat agar ulangan kamu nggak remed terus. Nah, teman-teman, kita lanjut ya. Invers pada matriks juga memiliki beberapa sifat yang bisa kamu ketahui. Apa aja ya? Ini dia! Waduh, banyak juga ya materi yang kita pelajari hari ini. Semoga penjelasan mengenai cara mencari determinan dan invers matriks di atas tadi bermanfaat ya buat kamu. Oh iya, kalau misalnya kamu masih kurang mengerti dengan materi ini dan ingin penjelasan yang lebih lengkap dan menarik, kamu bisa kok cobain belajar lewat aplikasi ruangbelajar. Bukan hanya video animasi menariknya aja yang bikin kamu nggak gampang bosen, tapi juga Master Teachernya yang asik dan keren-keren. Buruan langganan yuk sekarang! Sumber referensi Wirodikromo, S. dan Darmanto, M. 2019 Matematika untuk SMA/MA Kelas XI kelompok Wajib 2. JakartaErlangga. Artikel ini telah diperbaharui pada 15 Maret 2023.
JavaIsland: Cara Mencari Invers Matriks ordo 3x3. Invers Perkalian Matriks ordo (3 x 3) - Materi Lengkap Matematika. Minor, Kofaktor, Matrik Kofaktor dan Adjoin Matrik - Harianja Uniks. Adjoin Matriks 3X3 - Belajar. Cara Mencari Invers Matriks 3x3. 3 Cara untuk Membalik Matriks 3x3 - wikiHow. Matriks - Cara Mencari Determinan Matriks 2x2 dan
- Determinan seperti yang kita ketahui merupakan suatu nilai yang dapat dihitung dari unsur matriks persegi. Bagaimanakah cara menghitung determinan pada matriks? Dilansir dari Pure Mathematics Determinants and Matrices 2008 oleh Anthony Nicolaides, suatu matriks A memiliki determinan yang dinotasikan sebagai berikut Secara umum sifat dari determinan matriks adalah FAUZIYYAH Sifat pada determinan matriks Determinan Matriks 2x2 Misalkan terdapat suatu matriks 2x2 dengan elemennya adalah a, b, c, dan d sebagai berikut FAUZIYYAH Matriks dengan ordo 2x2 Baca juga Konsep Matriks Notasi, Elemen, Baris, Kolom dan Ordo Dikutip dari Matrices in Engineering Problems 2011 oleh Marvin J Tobias, determinan dari suatu matriks 2x2 diperoleh dari hubungan perkalian silang pada matriks tersebut. Secara matematis dapat ditulis sebagai berikut
umf6. 9jxc8a9pmf.pages.dev/1809jxc8a9pmf.pages.dev/249jxc8a9pmf.pages.dev/429jxc8a9pmf.pages.dev/2959jxc8a9pmf.pages.dev/1509jxc8a9pmf.pages.dev/2759jxc8a9pmf.pages.dev/2769jxc8a9pmf.pages.dev/1689jxc8a9pmf.pages.dev/42
cara mencari kofaktor matriks 3x3